9 research outputs found

    From the Visible to the Invisible: Patterns of Parasitism in Illinois Birds

    Get PDF
    Populations of many bird species have been declining throughout North America, although the causes of decline are often unclear. Rapidly changing environments present novel stressors that may be driving these declines by negatively impacting the health of birds. Therefore, we assessed how avian health is affected by environmental stressors along an urban to natural gradient. One potential indicator of bird health is infection with parasites and pathogens. In order to understand how environmental factors impact infection levels, we have to establish a baseline for measures of parasite diversity and abundance. For this project, we conducted a literature survey of articles from the past century documenting parasites and pathogens in seven common shrubland birds: the American Robin, Brown-headed Cowbird, Eastern Towhee, Field Sparrow, Gray Catbird, Brown Thrasher, and Northern Cardinal. We provide parasite species lists for each host, examine shared infections among hosts, and provide a map of the geographic range of observations. Parasites of many hosts are understudied, and we explore how detection bias may limit our understanding of parasite diversity and abundance. The project sought further, to develop an understanding of how climate change fits into this picture.Ope

    Predicting Flood Hazards in the Vietnam Central Region: An Artificial Neural Network Approach

    No full text
    Flooding as a hazard has negatively impacted Vietnam’s agriculture, economy, and infrastructure with increasing intensity because of climate change. Flood hazards in Vietnam are difficult to combat, as Vietnam is densely populated with rivers and canals. While there are attempts to lessen the damage through hazard mitigation policies, such as early evacuation warnings, these attempts are made heavily reliant on short-term traditional statistical models and physical hydrology modeling, which provide suboptimal results. The current situation is caused by the fragmented approach from the Vietnamese government and exacerbates a need for more centralized and robust flood predictive systems. Local governments need to employ their own prediction models which often lack the capacity to draw key insights from limited flood occurrences. Given the robustness of machine learning, especially in low data settings, in this study, we attempt to introduce an artificial neural network model with the aim to create long-term forecast and compare it with other machine learning approaches. We trained the models using different variables evaluated under three characteristics: climatic, hydrological, and socio-economic. We found that our artificial neural network model performed substantially better both in performance metrics (91% accuracy) and relative to other models and can predict well flood hazards in the long term

    Modeling epidemics: A primer and Numerus Model Builder implementation

    No full text
    Epidemiological models are dominated by compartmental models, of which SIR formulations are the most commonly used. These formulations can be continuous or discrete (in either the state-variable values or time), deterministic or stochastic, or spatially homogeneous or heterogeneous, the latter often embracing a network formulation. Here we review the continuous and discrete deterministic and discrete stochastic formulations of the SIR dynamical systems models, and we outline how they can be easily and rapidly constructed using Numerus Model Builder, a graphically-driven coding platform. We also demonstrate how to extend these models to a metapopulation setting using NMB network and mapping tools. Keywords: SIR, SEIR models, Stochastic simulation, Dynamic networks, Compartmental model

    Application of Deep Learning for Classification of Intertidal Eelgrass from Drone-Acquired Imagery

    No full text
    Shallow estuarine habitats are globally undergoing rapid changes due to climate change and anthropogenic influences, resulting in spatiotemporal shifts in distribution and habitat extent. Yet, scientists and managers do not always have rapidly available data to track habitat changes in real-time. In this study, we apply a novel and a state-of-the-art image segmentation machine learning technique (DeepLab) to two years of high-resolution drone-based imagery of a marine flowering plant species (eelgrass, a temperate seagrass). We apply the model to eelgrass (Zostera marina) meadows in the Morro Bay estuary, California, an estuary that has undergone large eelgrass declines and the subsequent recovery of seagrass meadows in the last decade. The model accurately classified eelgrass across a range of conditions and sizes from meadow-scale to small-scale patches that are less than a meter in size. The model recall, precision, and F1 scores were 0.954, 0.723, and 0.809, respectively, when using human-annotated training data and random assessment points. All our accuracy values were comparable to or demonstrated greater accuracy than other models for similar seagrass systems. This study demonstrates the potential for advanced image segmentation machine learning methods to accurately support the active monitoring and analysis of seagrass dynamics from drone-based images, a framework likely applicable to similar marine ecosystems globally, and one that can provide quantitative and accurate data for long-term management strategies that seek to protect these vital ecosystems

    Deep Learning Segmentation of Satellite Imagery Identifies Aquatic Vegetation Associated with Snail Intermediate Hosts of Schistosomiasis in Senegal, Africa

    No full text
    Schistosomiasis is a debilitating parasitic disease of poverty that affects more than 200 million people worldwide, mostly in sub-Saharan Africa, and is clearly associated with the construction of dams and water resource management infrastructure in tropical and subtropical areas. Changes to hydrology and salinity linked to water infrastructure development may create conditions favorable to the aquatic vegetation that is suitable habitat for the intermediate snail hosts of schistosome parasites. With thousands of small and large water reservoirs, irrigation canals, and dams developed or under construction in Africa, it is crucial to accurately assess the spatial distribution of high-risk environments that are habitat for freshwater snail intermediate hosts of schistosomiasis in rapidly changing ecosystems. Yet, standard techniques for monitoring snails are labor-intensive, time-consuming, and provide information limited to the small areas that can be manually sampled. Consequently, in low-income countries where schistosomiasis control is most needed, there are formidable challenges to identifying potential transmission hotspots for targeted medical and environmental interventions. In this study, we developed a new framework to map the spatial distribution of suitable snail habitat across large spatial scales in the Senegal River Basin by integrating satellite data, high-definition, low-cost drone imagery, and an artificial intelligence (AI)-powered computer vision technique called semantic segmentation. A deep learning model (U-Net) was built to automatically analyze high-resolution satellite imagery to produce segmentation maps of aquatic vegetation, with a fast and robust generalized prediction that proved more accurate than a more commonly used random forest approach. Accurate and up-to-date knowledge of areas at highest risk for disease transmission can increase the effectiveness of control interventions by targeting habitat of disease-carrying snails. With the deployment of this new framework, local governments or health actors might better target environmental interventions to where and when they are most needed in an integrated effort to reach the goal of schistosomiasis elimination
    corecore